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Traditional vs Digital Health{&#ftvs B{u

Mechanization, Mass production,

. Computer and Cyber Physical
water power, steam assembly line, .
. automation Systems
power electricity
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1784 1870 1969 Now

https://www.industryleadersmagazine.com/ready-fourth-industrial-revolution/
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Modified from David Scheer’s presentation in HRS 2019
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Mobile technology
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Digital'Clinic

Generating mHealth data

Big data analytics

Precision mHealth
Population mHealth

Clinical workflows
Device integration &
interoperability

Device regulation

Cost effectiveness &
Outcomes
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Digital Device

Digital'Patient

Design simplicity

Telemedicine
Smartphone-connected

devices

Patient self-measurements

Wireless and wearable devices

Patient generated data

Sensors

Behaviour modification

Lab-on-a-chip technologies

Digital retention
Handheld imaging

Digital engagement

Patient
Interpretation
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Health Information
Transferred Between
Patients and Practitioners
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Measurements Practitioner

Automated
Diagnostic
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tization of healthcare

EHJ 2016;37(18):1428-1438

& digitization of healthcare

Pratictioner
Interpretation

EHJ 2016;37(18):1428-1438
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Personalized Path in managing Arrhythmia
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Genetics/Biomarkers ‘
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Risk Factors

Digital Health

Modified from Nassir Marrouche's presentation in HRS 2019
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Patient Perspective & A K &1 B

Want regular updated from health care system
Want access to data via EMR portal
Want basic information of their CIED

Consumer devices to help diagnosis

Cardiovascular Implantable Electronic Device (CIED)
Electronic medical record ( EMR)
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Wearable Fitness Trackers and Heart Disease
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What Are Fitness Trackers?

Fitness or activity trackers are devices with special sensors that can
monitor your movement. Often referred to as “wearables,” these de-
vices are typically worn around the wrist as a bracelet or embed-
ded in a mobile phone or wristwatch. They can measure footsteps
taken, distance traveled, type of movement (walk, run, or jog), and
quality and duration of sleep. Some wearables have additional sen-
sors to monitor heart rate, blood pressure, blood oxygen levels, and
perspiration. Data from wearables can be transferred to a smart-
phone, computer, database, or website. Connected smartphones
and wearables can alarm or vibrate to encourage behaviors, such as
exercise or sleep. As wearable technology matures, these devices
will likely cost less, and it may become easier to share data from them
with your health care professional, clinic, or hospital.

Can Fitness Trackers Prevent or Treat Heart Disease?
Professional cardiology society guidelines recommend that most pa-
tients participate in regular exercise. However, these societies have
not yet given recommendations on how fitness trackers should be
used because no long-term studies have been completed that have
tested whether the use of fitness trackers can help prevent heart
disease. Also, the accuracy of most wearables has not been verified
inclinical studies. In fact, some devices may provide inaccurate mea-
surements, particularly during intensive exercise.

What Are the Benefits of Using a Fitness Tracker?
Despite these limitations, fitness trackers still may have benefits for
you. Physical inactivity is an important risk factor for heart disease.

Benefits of using a fitness tracker
@ Set realistic fitness goals @ Monitor your progress
Ay

Distance
traveled

Doctor Family and friends

JAMA Cardiol. 2016;1(2):239.
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Digital Health Tools for Arrhythmia identification
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Modified froqn Jagqueline Shreibati’s presentation in HRS 2019
17

Wearables data sharing

FRAERNTE

[+
MGMASER

PATIENTS SHARE

DOES YOUR YES . DATA FROM

WEARABLES

PRACTICE USE DATA Seinid
FROM PATIENTS’ OR VIATHER

PATIENT PORTAL

L. .CONSUMER/HEALTH
WEARABLES?

JUNE 12, 2017 POLL
1106 APPLICABLE RESPONSES
OUT OF 1168 TOTAL RESPONSES

FOR MORE INFORMATION,
VISIT MGMA.ORG/POLLS.

Modified from David Scheer’s presentation in HRS 2019
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Step Back and Ask

* What?
? * Where?
* Regulated by FDA?

O;
@. {&¢ | - Should | Trust?

* Interpret?
» Useful?
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Government Perspective BT 2

* Reduce inefficiencies
IMDF }

* Increase quality FDA

* Improve access

* Reduce cost

» Engage patients
Regulatory
Paradigm

International Medical Device Regulator;
20

10



10/6/2020

FDA — Digital health

Read Our Digital Health Innovation
=== Action Plan

The Digital Health Innovation Action Plan outlines our

DIGITAL HEALTH INNOVATION efforts to reimagine the FDA’s approach to ensuring all
ACTION PLAN . . . .
Americans have timely access to high-quality, safe and

- effective digital health products. As part of this plan, we

committed to several key goals, including increasing the
number and expertise of digital health staff at the FDA,
launching the digital health software precertification
pilot program (“Pre-Cert”) and issuing guidance to
modernize our policies.

Commissioner’s Statement: Advancing new digital health policies to encourage
innovation, bring efficiency and modernization to regulation
https://www.fda.gov/medical-devices/digital-health

21

Digital Health Tools : FDA-Cleared
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Modified from Jacqueline Shreibati’s presentation in HRS 2019
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Devices of Al fHEEHV 2L &

Wearables Wearables

CIED _
Medical grade Consumer Devices

Atrial Fibrillation — ® 118 BPM Average
This ECG shows signs of AFib.
If this is an unexpected result, you should

talk to your doctor.

HMMMWJLMM\MM
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Rhythm Abnormalities & Wearable Devices
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An AF alert could be a false positive Beware of inaccurate measurements due Chronotropic incompetence does not
from irregular rhythm detection to limitations of the PPG-based sensor trigger a notification
by the photoplethysmographic (PPG) sensor Assess if heart rate is appropriate Determine if bradycardia is primary or secondary
Confirm rhythm with electrocardiogram (ECG) (ie, related to stress, anxiety, pain, (ie, related to medication, hypothyroidism, or infection)
to rule out ectopic rhythms or variable infection, dehydration, pregnancy,
atrioventricular nodal conduction or m_EdICHtIOH_) or IHHPDFOPr_IatE Confirm with ECG
This may involve ambulatory ECG monitoring and '_f proport_u_ma! to baseline . . .
physical conditioning Evaluate heart rate acceleration with exercise

Confirm by ECG or
ambulatory ECG monitoring!

Consider risk factors for thromboembolism ASSES3 SYHIPLUINS aliu EvaluaLe 101 Assess for symptoms that correlate with bradycardia

and risks vs benefits of anticoagulation structural heart disease (ie, syncope, presyncope, or exertional tolerance)

Evaluate for structural heart disease Consider referral for further If symptoms » Consider referral for pacemaker

Determine optimal strategy of rate vs rhythm IEEGSIE R O s If no symptoms » Consider ambulatory ECG

control depending on patient’s symptoms monitoring; consider exercise treadmill test

Consider referral for further management to unmask chronotropic incompetence

if indicated JAMA. 2019;321(11):1098-1099
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Health Care System Perspective
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 CIED

* Remote

* New Medical devices
 New Consumer devices
* Big data

* Research

26
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Big data &
Electronic health records

(EHR)
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Scalable and accurate deep learning with EHR
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Nursing Flowsheet

npj Digital Medicine 2018;1:18
28
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Scalable and accurate deep learning with EHR
LURE B8 R E 1 m B i s B

. In patient mortality

to hospital

Nursing Flowsheet

Time when prediction is made

npj Digital Medicine 2018;1:18
29
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Study Study  Study population Digital health technology Comparator Outcomes Salient findings
size intervention group
Heart failure:
Koehler et al.* 710 Ambulatory class I-IIl HF  Weight scale, blood pressure,and ~ Usual care nt difference in outcomes of
1M-HF patients with ejection single lead ECG HF hospitalization [(15 vs
Randomized trial fraction =35% 17%) hazard ratio 0.89 (95% CI 0.67.
at 24 months 1.19.P = 0.44)]
188 Sympt HF patients blood pressure, and  Usual care HF readmission at 3 months At 3 months, telen
) anitor
Randomized trial n within 2 az:
USA tio 050 (35% 1 025095,
P =005)]
Cardiac surgery
Arrhythmia
Barrett et al.”' 146 Patients referred cardiac Zio Patch wireless telemetry Simultaneous Holter ~ Comparison of the Zio Patch detected significantly more
Prospective arrhythmia management monitor monitor arrhythmia detection over events over the total wear time
observational the total wear time compared with Holter monitoring
USA (96 vs. 61 events, P < 0.001)
Lowres et al.” 1000 Patients aged 65 or greater  AliveCor smartphone [ECG - Prevalence of newly Smartpheone rhythm screening by
SEARCH-AF screened for the presence diagnosed atrial fibrillation pharmacists demonstrated a 7%
Prospective of an atrial arrhythmia prevalence and a 1.5% incidence of
observational newly diagnosed atrial fibrillation in a
Australia community cohort of elderly patients
Coronary heart disease
Chow etal”? 710 Aduk patients with coronary  Text messaging to premote tobacca  Usual care &-month LOL-C levels, At 6 months, text messaging was
TEXT ME heart disease established . healthy eating, and systolic blood pressure
Randomized trial h
Australia
angiographica
smoking (26 vs. 44%) . .
et o T EHJ 2016;37(18):1428-1438

Using smart watch and Al to detect AF
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Figure 2.
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Accuracy of Detecting Atrial Fibrillation in the Cardioversion Cohort

Photoplethysmography

| A | Cardioversion cohort

B | Ambulatory subset of remote cohort

100 o 1004
80 80
60 = 604
404 E 404
C statistic 0.97 (0.94-1.00) C statistic 0.72(0.64-0.78)
204|  Sensitivity of 98.0% 20 Sensitivity of 67.7%
— — Specificity of 90.2% Specificity of 67.6%
DNN, heuristic pretraining
° 0 20 40 60 80 100 ’ 0 20 40 60 80 100
% 1 -Specificity, %
Cohort PPV NPV AUC
Cardioversion cohort (sedentary) 90.9 97.8 0.97
Subset of remote cohort (ambulatory) 98.1 0.72
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JAMA Cardiol. 2018;3(5):409-416
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Results of a Large-scale, App-based Study to
Identify Atrial Fibrillation Using a Smartwatch:

The Apple Heart Study

Mintu Turakhia MD MAS and Marco Perez MD
on behalf of the Apple Heart Study Investigators

] " o
T 03335800 Stanford /MEDICINE
Am Heart J. 2019;207:66-75
33
Positive Predictive Values
Irregular Tachograms Irregular Pulse Notifications
. ‘ _ @ Regular thythm —
Pulse j QSugg_es(_iue_oIA_F_;___._,_ rjo:ifica(ion (
W/U\/U\ @ ®: 000 000! u
TaChDgram " 1250ms -783M5‘ 99999 - TommmmEmmmmmmT
'
o ALY oo b
= =
Afib | Positi . o . Afib . Positi o
ECGPatch | Tachograms  PPV'O75%C)  oGpain  otiications PPV (95%CD

Overall 1,489 2089  0.71(0.69-0.74) 72 86  0.84(0.76-0.92)
Age =65 548

914  0.60(0.56-0.64) 25 32  0.78(0.64-0.92)
34
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Conclusions

Study w/ Novel Virtual Design
419,297 in 8 months

%o

Proportion Notified low
Overall: 0.52% (0.49-0.54)

10/6/2020

I

ECG patch 13 days after
34% had Afib

Positive predictive value
Tachogram: 0.71(0.69-0.74)
Notification: 0.84 (0.76-0.92)

35

The NEW ENGLAND JOURNAL of MEDICINE

“ ORIGINAL ARTICLE ||

Large-Scale Assessment of a Smartwatch
to Identify Atrial Fibrillation

Marco V. Perez, M.D., Kenneth W. Mahaffey, M.D., Haley Hedlin, Ph.D.,
John S. Rumsfeld, M.D., Ph.D., Ariadna Garcia, M.S., Todd Ferris, M.D.,
Vidhya Balasubramanian, M.S., Andrea M. Russo, M.D., Amol Rajmane, M.D.,
Lauren Cheung, M.D., Grace Hung, M.S., Justin Lee, M.P.H., Peter Kowey, M.D.,
Nisha Talati, M.B.A., Divya Nag, Santosh E. Gummidipundi, M.S.,

Alexis Beatty, M.D., M.A.S., Mellanie True Hills, B.S., Sumbul Desai, M.D.,
Christopher B. Granger, M.D., Manisha Desai, Ph.D., and
Mintu P. Turakhia, M.D., M.A.S., for the Apple Heart Study Investigators*

BACKGROUND
Optical sensors on wearable devices can detect irregular pulses. The ability of a smart-
watch application (app) to identify atrial fibrillation during typical use is unknown.

METHODS

Participants without atrial fibrillation (as reported by the participants themselves)
used a smartphone (Apple iPhone) app to consent to monitoring. 1f a smartwatch-
based irregular pulse notification algorithm identified possible atrial fibrillation, a
telemedicine visit was initiated and an electrocardiography (ECG) patch was mailed
to the participant, to be worn for up to 7 days. Surveys were administered 90 days
after notification of the irregular pulse and at the end of the study. The main objectives
were to estimate the proportion of notified participants with atrial fibrillation shown
on an ECG patch and the positive predictive value of irregular pulse intervals with a
targeted confidence interval width of 0.10.

36

57% Notified (surveyed)
Contacted Non-Study Provider

[

©

Exposure to the
app was safe

RESULTS

We recruited 419,297 participants over 8 months. Over a median of 117 days of
monitoring, 2161 participants (0.52%) received notifications of irregular pulse. Among
the 450 participants who returned ECG patches containing data that could be analyzed
— which had been applied, on average, 13 days after notification — arial fibrillation
was present in 34% (97.5% confidence interval [CI], 29 to 39) overall and in 35%
(97.5% CI, 27 to 43) of participants 65 years of age or older. Among participants who
were notified of an irregular pulse, the positive predictive value was 0.84 (95% CI, 0.76
to 0.92) for observing atrial fibrillation on the ECG simultaneously with a subsequent
irregular pulse notification and 0.71 (97.5% CI, 0.69 to 0.74) for observing atrial fibril-
lation on the ECG simultaneously with a subsequent irregular tachogram. Of 1376
notified participants who returned a 90-day survey, 57% contacted health care pro-
viders outside the study. There were no reports of serious app-related adverse events.

CONCLUSIONS

The probability of receiving an irregular pulse notification was low. Among partici-
pants who received notification of an irregular pulse, 34% had atrial fibrillation on
subsequent ECG patch readings and 84% of notifications were concordant with atrial
fibrillation. This siteless (no on-site visits were required for the participants), prag-
matic study design provides a foundation for large-scale pragmatic studies in which
outcomes or adherence can be reliably assessed with user-owned devices. (Funded by
Apple; Apple Heart Study ClinicalTrials.gov number, NCT03335800.)

N Engl J Med 2019;381:1909-17.
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Cardiologist-level arrhythmia detection and

classification in ambulatory ECG using DNN

Table 1| Diagnostic performance of the DNN and averaged individual cardiologists compared to the cardiologist committee

consensus (n=328)

Algorithm AUC (95% CI)®

| Algorithm F? |

| Average cardiologist F, |

Sequence® Set® Sequence Set Sequence Set

Atrial fibrillation and flutter 0.973 (0.966-0.980) 0.965 (0.932-0.998) 0.801 0.831 0.677 0.686
AVB 0.988 (0.983-0.993) 0.981(0.953-1.000) 0.828 0.808 0.772 0.761
Bigeminy 0.997 (0.991-1.000) 0.996 (0.976-1.000) 0.847 0.870 0.842 0.853
EAR 0.913 (0.889-0.937) 0.940 (0.870-1.000) 0.541 0.596 0.482 0.536
IVR 0.995 (0.989-1.000) 0.987 (0.959-1.000) 0.761 0.818 0.632 0.720
Junctional rhythm 0.987 (0.980-0.993) 0.979 (0.946-1.000) 0.664 0.789 0.692 0.679
Noise 0.981(0.973-0.989) 0.947 (0.898-0.996) 0.844 0.761 0.768 0.685
Sinus rhythm 0.975 (0.971-0.979) 0.987 (0.976-0.998) 0.887 0.933 0.852 0.910
SVT 0.973 (0.960-0.985) 0.953 (0.903-1.000) 0488 0.693 0.451 0.564
Trigeminy 0.998 (0.995-1.000) 0.997 (0.979-1.000) 0.907 0.864 0.842 0.812
Ventricular tachycardia 0.995 (0.980-1.000) 0.980 (0.934-1.000) 0.541 0.681 0.566 0.769
Wenckebach 0.978 (0.967-0.989) 0.977 (0.938-1.000) 0.702 0.780 91 0.738
Frequency-weighted average 0.978 0.977 0.807 0.7

37

Nat M&d. 2019;25(1):65-69

Cardiologist-level arrhythmia detection and

classification in ambulatory ECG using DNN

Class Atrial fibrillation

Class Trigeminy

Class AVB

1.0 1.0 E_’— 1.0
0.8 os (P 08
= =
z 06 £ os 064+
T K T
£ 5 5
@ 04 @ 04 @ 04
02 —— Model 02 —— Model 02 —— Model
4 Individual cardiclogist 4+ Individual cardiologist 4+ Individual cardiologist
@ Average cardiologist @ Average cardiologist @ Average cardiologist
0.0 0.0 - 0.0 4
00 01 02 03 04 05 00 o1 0.2 03 04 05 00 01 0.2 03 04 05
Specificity Specificity Specificity
b Class Atrial fibrillation Class Trigeminy Class AVB
10 1.0 10
+
08 0.8 + 08
= < =
2 06 S o8 S 06
g g g
8 g g
s =S &
E 04 E 04 i 04
o [ a
0.2 4 — Model 0.2 4 — Model 0.2 4 — Model
+ Individual cardiologist +  Individual cardiologist + Individual cardiclogist
e Average cardiologist @ Average cardiologist ® Average cardiologist
0.0 0.0 0.0
00 02 04 06 08 1.0 00 02 04 0.6 08 1.0 00 02 04 06 08
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Sensitivity (Recall)

Sensitivity (Recall)

Sensitivity (Recall)

Nat Med. 2019;25(1):65-69
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Using AI-ECG to screen LV dysfunctlon

ﬁﬁkl%ﬁ* DEBREBELOLEXRE

461,434 pairs had more than 2 weeks
between ECG and TTE and were discarded

163,892 pairs were within a 2-week interval
and were considered valid for analysis

I
! !

The first valid pair for each patient Any additional valid pair that was not the
was selected for the main analysis earliest for that patient was used for follow-up
(total, 10,029) analysis (total, 63,863)
-} Each pair originated from a unique patient, and the
1 l ECG and TTE were separaied by less than 2 weeks

2,200 randomly selected pairs were used
to present a proof-of-concept model (for
internal funding application)

The rest of the ECG-TTE pairs were
used for analysis (total, 97,829)

! !

35,970 ECG-TTE pairs used to 8,989 ECG-TTE pairs used to 52,870 ECG-TTE pairs used to
train the network validate the network test the network
Training set Internal validation set Testing set

Nat Med. 2019;25(1):70-74
40
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Using AI-ECG to screen LV dysfunction

EFHAI 2 OEBRESELEXRE

ROC b Group Sensitivity Specificity OR (95% Cl)
0 Female <40 74 (53/72) 95 (2,895/3,053) H——— 51.11 (29.55-88.41)
Male <40 72 (86/120) 92 (2,405/2,616) —— 28.83 (18.92-43.93)
0.8 - Female 40-49 74 (63/85) 92 (2,300/2,495) —e— 33.78 (20.35-56.07)
Male 40-49 80 (178/223) 89 (2,491/2,796) e 32.31 (22.81-45.75)
Female 50-59 85 (150/177) 91 (3,286/3,593) —e—- 59.46 (38.83-91.06)
E 06 1 Male 50-59 86 (390/455) 87 (4,440/5,116) —— 39.41 (29.94-51.87)
:% Female 60-69 90 (235/260) 89 (4,207/4,707) ——e————1{79.09 (51.83-120.69)
@ 04 Male 60-69 89 (722/815) 84 (5,762/6,867) He— 40.48 (32.32-50.71)
Female 70-79 80 (228/284) 86 (4,230/4,897) o 25.82 (19.06-34.98)
Male 70-79 90 (843/936) 78 (5,014/6,433) ] 32.03 (25.65-40.00)
0.2 1 Female >80 84 (156/186) 81 (2,350/2,895) [ 22.42 (15.00-33.50)
o — Validation set (AUG = 0.933) Male >80 89 (463/518) 73 (2,382/3,271) e 22.56 (16.88-30.14)
o e — Testing set (AUC = 0.932) Overall 86 (3,567/4,131) 86 (41,762/48,739) i 37.86 (34.52-41.52)
0 0f2 0?4 OTG 0.‘8 1.0 0 2I5 5I0 7I5 1fIJO 125
1 — specificity OR
CNN Nat Med. 2019;25(1):70-74
41

Using AlI-ECG to screen LV dysfunction
EH%AI - LDEERBEAVERT

— Initially classified as normal EF
— Initially classified as low EF
o 40 A
N
wn
) 35.3% (53)
k)
i
o 3017
£
Q.
% 23.6% (120
>
(0]
S 20-
] 17.6% (224)
Q
o
2 . 11.1% (396 10.4% (518)
7.2% (1,048)
5.8% (714)
3.9% (2,129)
2.3% (3,853)
0 : : : ; ;
0 3 6 9 12 15

Time after index ECG—TTE (vears) Nat Med. 2019;25(1):70-74
42
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Industry Perspective 3 HYE B

» Supportive

» Changing relationships
* Remote CIED

* New devices
* Regulatory requirements

* Business model

43

CORA

CORA DESIGN GOALS N

= Engage patients and
caregivers

= Visualize complex datain a
simple and easy way

= Educate patients and

caregivers about their
device and condition

Modified from Leslie Saxon's presentation in HRS 2019
44
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Implant-based multiparameter telemonitoring of
patients with heart failure (IN-TIME)

716 patients enrolled

‘ 52 excluded

18 withdrew consent
11 violated inclusion or
exclusion criteria
7 failed to attend the

v

h 4

randomisation visit
4 had poor telemonitoring
transmission rate

‘ 664 randomly assigned

4died
‘ 8 for other reasons

LO0fhpbtpttn.
0-954
0904
0-85

Telemonitoring

IR

Control

0-80

l

!

v

333 allocated to telemonitoring group ‘

331 allocated to control group

v

v

333 included in all analyses
303 completed follow-up
30 terminated the study prematurely
10 died
6 lost to follow-up
4 withdrew consent
3 had poor telemonitoring transmission rate
7 other

331included in all analyses
279 completed follow-up
52 terminated the study prematurely
27 died
9 lost to follow-up
4 withdrew consent
12 other

46

Devices & data

Hazard ratio 0-36 (§5% C1 0-17-0-74;
log-rank p=0-004)

T T T T
200 300 400 500

Time (days)

T
0 100

Number at risk
Telemonitoring 333
Contral 331

318
309

312 295 2

5
299 274 19

Lancet. 2014;384(9943):583-590

Digital Health

R O

__,r.;::'.-,:-l.,l K x

X X oSt

o arai U .-—'.;.;.-'y )‘-":.'
AI TRE o SRR
Diagnosis LA
Prediction
Improve Survival
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Prediction of cardiac arrest by machine learning

LA 2R 22 8 2R 8 A/ OBE 4K LE

Table 1 Modified early warning score

Score Respiratory rate (breaths/minute) Heart rate (beats/minute) Systolic blood pressure (mmHg) Temperature (°C) AVPU

3

2 <38

] -

0 9to 14
1 15 to 20
2 21 to 29
3 > 29

<40

41 to 50

51 to 100
101 to 110
111 to 129
> 129

<70

71 to 80
81 to 100
101 to 199

> 200

<35

35.1 to 36 -

36.1 to 38 Alert

38.1 to 385 Reacting to voice
> 386 Reacting to pain

- Unresponsive

AVPU, A for ‘alert’, V for 'reacting to vocal stimuli’, P for 'reacting to pain’, U for ‘unconscious’.

48

Crit Care. 2012 Jun 21;16(3):R108
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Prediction of cardiac arrest by machine learning

LA R 2 8 RFEA DB K LE
ROC Curve ROC Curve - ML --

”’_ - o”
0.8 s 0.8 L
"- t”
l'l "'

- P
2 0.6 e 0.6 P
= o = e
S - k- /
= - = P
@ rd @ r
W 0.4 P W) 0.4 -

HRV

/
0.2+ ',’ -—=-MEWS 0.2+ ".'
/
! ML 7 -== MEWS
H K —_L
0.0 0.0 T T T T T N N
R I o= % »\ital signs
1 - Specificity 1 - Specificity
Figure 2 Machine learning score and modified early warning Figure 3 Machine learning score and modified early warning

score predicting death within 72 hours. Receiv

characteris

score predlctlng cardiac arrest within 72 hours. Re

sfter admission

Cardiac arrest within 72 hours Death after admission  Crit Care. 2012 Jun 21;16(3):R108

Prediction of cardiac arrest by machine learning

LA Re 2 8 RFEA OB R LE

Table 4 Discriminatory values of the machine learning score and the modified early warning score
Variable ML score (95% CI)* | MEWS (95% CI)®  Difference (95% Cl for difference)* P value

Cardiac arrest within 72 hours after presentatior

Area under R(

294 (246 to 3.52) 1.6

16.9 to 26.9)

0 (941 t0 9

267 (223 to 3.20) 1.68 (145 to 1.94)

Cl, confidence interval; MEWS, modified early warning score; ML, machine learning; ROC, receiver operating characteristic. °A cutoff value of 60 and above was
used for the ML score. °A cutoff value of 3 and above was used for the MEWS. “The 95% confidence interval for the difference between the ML score and the
MEWS for each diagnostic statistic was calculated, except for positive predictive value, negative predictive value, and likelihood ratio (+) that are not well
established. “Likelihood ratio of a positive test. “In-hospital death during current admission. 95% confidence interval or statistical test not computed because the

method is not well established for the diagnostic statistics concerned. Crit Care. 2012 Jun 2116(3)R108
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ECG prior to in-hospital cardiac arrest
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J Clin Monit Comput (2015) 29:385-392
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ECG prior to in-hospital cardiac arrest

B/ O BER LIE BT O EE ML

Table 2 Distribution of QRS morphology and ST segment changes

. R 30
prior to cardiac arrest A
= QRS Morphol
Initial  Initial  Initial p value* o5 GG Morphology
thythms: rhythms: rhythms of = ST Elevation
asystole  PEA asystole and % ST Depression
(n=15) (n=24) PEA Kok 20
Qo
3
QRS 12 (80) 9 (38) 21 (54) 0.01 i‘? 15
morphology °
(%) 3
ST elevation (%) 11 (73) 9 (38) 20 (51) 0.02 é 10
ST depression 10 (67) 13 (54) 23 (59) 0.44
(%) 5
ST elevation or 10 (67) 8 (33) 18 (46) 0.04
depression (%) 0
1L, avVF I, avL \Al avVR

* Chi-square was performed to detect significant differences between

PEA and asystole groups (p < 0.05) Full Disclosure ECG Leads

J Clin Monit Comput (2015) 29:385-392
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Deep Learning for SCA Detection in AED

%m FQ“MQE 8 S\ /0l 25 B B 2R R R 3E

a) NSH pECG % b) NSH signal of NSH pECG % a) SH pECG F b) NSH signal of SH pECG

Amplitude (mV)
Ampl

Amplitude (mV)
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Time (s) Time (s) Time (s) Time (s)

_¢) SH signal of NSH pECG d) Spectrums s © SH signal of SH pECG
5 it

d) Spectrums

5

o
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% |
itude (n.u)

Amplitude (mV)

Amplitude (n.u)

o
4 4
0 2 4 6 8 0 2 4 6 8
Time (s) Frequency (Hz) Time (s) Frequency (Hz)
Figure 2. Input channels and their spectrums of the CNN for NSH pECG. Figure 3. Input channels and their spectrums of the CNN for SH pECG.

Sci Rep. 2018 Nov 21;8(1):17196
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Deep Learning for SCA Detection in AED

FEWFEEMQ@ = S0 B 25 BR B SRAE R 1 3E

Table 3. The selectec Ref. Appoaches Type of method | Segment Ac (%) | Se(%) Sp (%)
-MVMD
Nguyen et al.® - GA, SFFS ML 8s 99.00 97.36 99.16
y . -SVM
Convolution, N
Input ReLu poc| Acharya et al.' -CNN DL 2s 93.18 95.32 91.04
channels
-MVMD
Proposed SAA - CNNE ML and DL 8s 99.26 97.07 99.44
—_— -BS

Table 4. Performance comparisons of the proposed method to existing algorithms.

4 w
NSH s LFvector | _________ \
¢ Shock
g T1 A | I 1
BS classifier| -)| « Non-shock }
PECG
M
v
SH signal o -
al M | | Prepro- ECG 8s
v

Sci Rep. 2018 Nov 21;8(1):17196
54

27



10/6/2020

An Algorithm Based on Deep Learning for

Predicting In-Hospital Cardiac Arrest

8 hours
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Prediction

Deep learning — based early warning system (DEWS) J Am Heart Assoc. 2018 Jun 26;7(13)
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An Algorithm Based on Deep Learning for

Predicting In-Hospital Cardiac Arrest

Hospital A Hospital B
AUROC (95% CI)  AUPRC (95% CI) AUROC (95% CI)  AUPRC (95% CI)
Predicting cardiac arrest
DEWS 0.850 (0.847-0.853) 0.044 (0.040-0.046) 0.837 (0.829-0.857) 0.239 (0.219-0.257)
MEWS 0.603 (0.603-0.603) 0.003 (0.003-0.003) 0.765 (0.765-0.765) 0.028 (0.028-0.028)
Random Forest 0.780 (0.776-0.787) 0.014 (0.012-0.014) 0.823 (0.812-0.828) 0.203 (0.184-0.218)
Logistic Regression  0.613 (0.607-0.620)  0.007 (0.006-0.007) 0.780 (0.767-0.795)  0.057 (0.051-0.061)

Predicting death without attempted resuscitation

DEWS 0926 (0.925-0.929) 0.188 (0.180-0.194) 0911 (0910-0.922) 0.221 (0.210-0.229)
MEWS 0.815 (0.815-0.815) 0.032 (0.032-0.032) 0.894 (0.894-0.894) 0.172 (0.172-0.172)
Random Forest 0910 (0.908-0.913) 0.065 (0.061-0.068) 0910 (0.908-0.911) 0.150 (0.141-0.160)
Logistic Regression  0.655 (0.650-0.661)  0.020 (0.019-0.020) 0.806 (0.802-0.812) 0.112 (0.105-0.118)

J Am Heart Assoc. 2018 Jun 26;7(13)
56
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An Algorithm Based on Deep Learning for
Predicting In-Hospital Cardiac Arrest
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SPTTS
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1-Specificity

Receiver operating characteristic curve for predicting In-hospital cardiac arrest in hospital A
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J Am Heart Assoc. 2018 Jun 26;7(13)

Machine Learning Algorithm in Estimating

Mortality Risk in Cardiac Surgery.

Correlation Between Predicted Risk in Both Models

40 50 60 70 80
L L | L

XGBoost Predicted Risk (%)

0 10 20 30
| L L |

58

Correlation coefficient (r) = 0.652

STS Predicted Risk (%)

T T
50 60

Area Under Receiver Operating Characteristic Curve

Ann Thorac Surg. 2019 Nov 7. pii: S0003-4975(19)31620-0

Precision -Recall Curve

—— STS Model (AP = 0.180)

XGBoast Model (mAP = 0.221)
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Predicting Cardiac Arrest and Respiratory Failure
Using Al with Simple Trajectories of Patient Data.

am Severa

Hospital B
EMR

1473 Excluded
le 1 1,231 Lessthan 1h (a P
2 Less than 1 h (cardia )
v
failur
s AST-PACE non-training 2
FAST-PACE training v FAST-PACE non-training Figure 3. Prediction model design. LSTM = long short-term memory; x = input; S = memory cell,
3,984 Included by random selection | P
ailur
1,386 Acute respiratory failure
1,992 No event
04 Card t 13,700 Excluded by random selection in no-event records
d reflecting the problem of significantly imbalanced classes
FAST-PACE test
10,024 Included
350 Acute respiratory failure ‘
0 No
154 Cardiac arrest ‘ X
J Clin Med. 2019 Aug 29:8(9)

Predicting Cardiac Arrest and Respiratory Failure

Using Al with Simple Trajectories of Patient Data.

Table 1. List of features.

Category Feature Data Type Range Missing (%)
Vital Pulse rate (bpm) continuous 0-300 11.46
Systolic BP (mmHg) continuous 0-300 7.78
Diastolic BP (mmHg) continuous 0-300 6.81
Sign Respiratory rate (breaths/min) continuous 0-150 12.76
SpO; (%) continuous 0-100 24.01
Body temperature (°C) continuous 2-45 14.36
~ t
History Treatment history categorical 0,1
(yes or no)
Operation * ASA classification continuous 1-6
peratio History of recent surgery (yes or no) categorical 0,1

* Treatment history: any pharmacological treatment or additional oxygen supply that could affect the vital signs at
the time of measurement; ¥ Operation: major surgery within one week of event occurrence.

J Clin Med. 2019 Aug 29;8(9)
60
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Predicting Cardiac Arrest and Respiratory Failure

Using Al with Simple Trajectories of Patient Data.

S ROC Curve ROC Curve
o // //
0.8 >y 3
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/”/ |
0.2 / Ve = FAST-PACE —— FAST-PACE
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y/ 4 — NEWS — NEWS
0.0 . .0 +5
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1 - Specificity 1 - Specificity

(b)

Figure 5. AUROC of FAST-PACE, MEWS, and NEWS predicting (a) acute respiratory failure and (b)
cardiac arrest within 6 h.

(@) Acute Respiratory failure Cardiac Arrest

J Clin Med. 2019 Aug 29;8(9)
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Al predicts Ml and cardiac death based on

clinical risk, CAC, and EAT

o ) Table 2 Multivariable Cox regression for event prediction
Long-term prediction of MI and cardiac death
1 HR (95% CI) P-value
08 High ML 2.94 (1.39-6.31) 0.005
Log2 (CAC score) 1.16 (1.06-1.27) 0.001
%‘ 0.6 ASCVD risk score (%) 1.04 (1.01-1.06) 0.001
Z Log2 (EAT volume) 143 (0.94-2.16) 0.095
c
[} )
$ 0.4 " = S Age (years) 1.01 (0.98-1.04) 0.670
_ ) H Gender (male) 0.96 (0.58-1.60) 0.885
ASCVD = 0.77 [0.72-0.82] *
0.2
CAC —— 0.77 [0.72-0.83]
0 == | CNN + XGBoost
o ey 0 ° | + Repeated cross-validation

Coronary artery calcium (CAC)
epicardial adipose tissue (EAT)

62

Cardiovasc Res. 2019 Dec 19. pii: cvz321
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Al predicts Ml and cardiac death based on

clinical risk, CAC, and EAT

Kaplan-Meier estimators for low and high ML risk

1
>
Z
=
S 0.9 1
= 0.85
o= ——  Low MLrisk
5 0.8 + ——  High ML risk
o2 p<0.001
0.75
T T T T T T T
1200 1200 1198 1197 1196 1194 1185 806 277
712 710 699 693 686 672 653 138 135
0 2 4 6 8 10 12 14 16 18

Time (years)

Figure 4 Kaplan—-Meier estimator for population (N = 1912) with low (blue) and high machine learning risk (red).

Cardiovasc Res. 2019 Dec 19. pii: cvz321
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Al for screen hyperkalemia

DA TEERET S Mmf

Figure 1. Development and Validation Data Sets Generation and Electrocardiogram (ECG) Labeling of Hyperkalemia

Development E‘ Validation
- ECGs from random 30% of Extract all digital ECGs from adult
Extract all_dlq\lat ECGs from adult patients patients from Minnesata site patients in Maya Clinic's Florida
in Mayo Clinic’s Minnesota site, 1994-2017 and Arizona sites, 2013-2018

Keep ECGs from patients with serum

potassium test + 12 h from the ECG
Keep ECGs from patients with serum potassium test

0-4 h after ECG

Keep ECGs from random 60% of patients

(development dataset) Keep ECGs from patients with estimated glomerular

filtration rate <60 mL/min/1.73 m22

No. of serum potassium tests per ECG
Exclude ECGs with left bundle branch block

If 2 1 serum potassium test 1 serum potassium test
Exclude ECGs in Florida or Arizona datasets if

from patients also in Minnesota dataset

Gaussian process to estimate

potassium level at time of ECG - -
Exclude ECG if potassium level closest to ECG

>5.3 mEq/L or <5.7 mEg/L

If estimated potassium level 25.5 If potassium level 25.5 mEq/L
mEg/L then hyperkalemia ECG then hyperkalemia ECG? N
If potassium level 25.7 mEq/L then hyperkalemia ECGP

KKeep 1 ECG per patient (validation dataset) JAMA Card|o| 2019 ’4(5) 428-436
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Table 2. Validation Data Set Performance for Hyperkalemia From 2 and 4 Leads of the ECG

Validation Data Set

Value (95% C1)

2-Lead ECG”

4-Lead ECG”

Sensitivity = Specificity High Sensitivity®

Sensitivity = Specificity High Sensitivity

Minnesota (n = 50099)

AUC
Sensitivity, %
Specificity, %
NPV, %
PPV, %

Florida (n = 6011)
AUC
Sensitivity, %
Specificity, %
NPV, %
PPV, %

Arizona (n = 5855)

AUC
Sensitivi4 - I
Specificity, %

NPV,
PPV, %

0.883 (0.873-0.893)
79.9 (77.6-82.0)
81.3 (80.9-81.6)
99.4 (99.3-99.4)
10.1(9.5-10.7)

0.883 (0.873-0.893)
90.2 (88.4-91.7)
63.2(62.7-63.6)
99,6 (99.5-99.7)
6.0(5.7-6.4)

0.860 (0.837-0.883)
80.5(75.4-84.9)
75.2(74.0-76.3)
98.7 (98.3-99.0)
14.0(12.3-15.7)

0.853 (0.830-p.87 0-0.877)
aeh EC1s

75.3(74.1-76.4) 55.0(53.7-56.3)
98.6(98.2-98.9) 99.0(98.6-99.3)
13.3(11.6-15.0) 8.7(7.7-9.8)

0.860 (0.837-0.883)
91.3(87.4-94.3)
54.7 (53.4-56.0)
99.2(98.8-99.5)
9.2(8.1-10.3)

0.901 (0.892-0.911)
81.3(79.0-83.4)
84.2(83.9-84.5)
99.4(99.3-99.5)
11.9(11.2-12.6)

0.901 (0.892-0.911)
89.3 (87.5-91.0)
70.0(69.6-70.4)
99.6(99.5-99.7)
7.2(6.8-7.7)

0.885 (0.863-0.907)
84.0(79.2-88.0)
77.1(75.8-78.0)
99.0(98.6-99.2)
15.4(13.7-17.3)

0.885 (0.863-0.907)
92.3(88.6-95.1)
60.5(59.2-61.7)
99.4(99.0-99.6)
10.5(9.3-11.7)

10/6/2020

-betterthan 2-lead ECG

77.0(75.9-78.1)
98.9 (98.6-99.2)
14.8(13.0-16.7)

60.3 (59.0-61.6)
99.4 (99.1-99.6)
10.1(9.0-11.4)

JAMA Cardiol. 2019;4(5):428-436.
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Applying Machine Learning on Classification of Electrocardiogram

Heartbeat Patterns

AAMI MIT-BIH
N \, L, R
» Dataset S e, ), A, a J, S
* MIT-BIH arrhythmia database v V. E
F F
* KMUH ECG data Q I, f,Q
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Input X5

—'{ ConvlD H RelLU H ConvlD H ReLU H Pooling }—‘

\—{ FC H ReLU H FC H Softmax H Output ’

LW B #B4@PE (Convolutional Neural Networks, CNN)

75

P AL A5 151

Sensitivity (SE) = TP-|-—FN

Positive predictivity (P*) =

TP +TN
TP+ FP+ TN+ FN
2 X Pt x Se
Pt + Se

TP + FP

Accuracy =

F — measure =
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Our method 0.8454

0.8405

0.9277 0.8819

0.7965
0.7268
0.7750

SVM-linear
SVM-RBF
KNN

BRI R 0 F 5 A
RFERENERAMEEEE

0.8226
0.6946
0.8102

0.8540
0.9981
0.8380

0.8380
0.8192
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Using Pattern Recognition Techniques to Identify
Different Waves in ECGs

7Au(har; Deng-Yi Wu, Yan-Ting Lin, Shie-Jue Lee, Wei-Chung Tsai, Tien-Chi Huang, Chia-Yen Dai.

[ Occrvien |

In this paper, we propose a pattern-recognition based system that can detect and locate automatically these di
waves in the electrocardiogram (ECG). The system starts with digitizing the ECGs into individual time series of data.
Then by detecting the peaks and troughs in a given time series, the P, Q, R, S and T waves can be identified and located
in this series. Based on the results, an expert system or a neural network model will be constructed as a medical assistant
1o be used in hospitals or clinics. We believe our research can help doctors provide more accurate and efficient diagnosis
for heart-related diseases.
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When the heart beats, a small current is generated, and the signal is amplific
which is called electrocardiogram (ECG). In previous research, the signal of the ECG attracted the attention of many
people. The ECG is the oldest and most enduring tool for the clinicians to diagnose diseases related to the heart. The
ECG can provide information about the state of the human heart, The standard ECG uses 10 cables to abtain 12 leads
look™ at the heart and the direction of the heart's electrical depolarization. The

and recorded by the recording device,

reflecting the angles at which electrodes "
ECG trace in a lead comprises three waves, P, QRS complex, and T, Possible diseases can be effectively revealed by
investigating the locations, shapes, or sizes of these waves on the 12 leads. It is very important to automatically detect
the ECG waveform,
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A. Data preprocessing 2 =
Because of the ECG is a whole photo with 12 leads. Therefore, { i A
cach lead must be preprocessed, the ECG signal is drawn, and the -

intensity value of each point is given, and the value corresponding
to the waveform is drawn for each pixel. It consists of four steps, s
the steps will be described in detail as follows:

Step 1. The grayscale conversion of the image. o

Step 2. Remove the extra background.

Step 3. Remove noise and make-up value.

Step 4. Take out the actual waveform value.
B. Waveform detection

In this section, we will use the search for peaks, troughs and baselines in the ECG signal, then use these results to find
the complete PQRST wave. The steps show as follow

Step 1. Find all the peaks and troughs in the waveform.

Step 2. Find the highest point(peak) of the R wave with the slope change, then the peak position will be defined as the

center point at the R wave.

Step 3. Find the lowest point(trough) of the R wave on both sides with the slope change, then the trough position will
be defined as the center point at the Q and S wave.

Step 4. Find the highest point(peak) of the center point at the Q wave on left sides, and find the highest point(peak) of
the center point at the S wave on right sides with the slope change, then the peak position will be defined as the
center point at the Pand Q wave.

Find the baseline point of the center point at the P wave on left sides, and find the baseline point of the center

point at the S wave on right sides with the slope change, then the complete PQRST wave will be detected.

Step 5.

We have proposed a new method for detecting
ECG waveforms. We use the peaks, troughs and
slopes to find the high, low and smooth points in
the waveform. These positions can define the
position of each waveform and the result shows
our detection works effectively

Green represents P wave, red
represents Q wave, blue represents
R wave, purple represents S wave,
and light blue represents T wave.
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» Digital health in cardiology

Al enhance lifecare in cardiology
* To predict mortality and morbidity!

» To make precision medicine possible!
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